

Real-time Experimental Parameters during typical CO₂ capture Analysis

Experimental outputs of each parameter during typical CO₂ capture analysis. (a) CO₂ breakthrough curve based on NDIR CO₂ Sensor, (b) temperature reading from K-type thermocouple standing just 5 mm above the sorbent material, (c) and (d) CO₂ and Ar gas flow in sccm during the analysis. CCS refers to the CO₂ Capture Area

Application Note 1: Dynamic CO₂ Breakthrough Analysis

Dynamic CO₂ adsorption breakthrough curves of CO₂ signal recorded by NDIR CO₂ Sensor under continuous 20 sccm 0.2% CO₂ gas flow of ten different test samples. Red dashed-line vertical to the x axis corresponds to gas switch onset point from Ar to 0.2% CO₂. Red circles pinned on CO2 curve represents the point where CO2 signal rise up.

Calculated CO₂ capture capacities (mmol/g) of corresponding sorbent materials

Application Note 2: Temperature Dependent CO₂ Desorption Analysis

 $\rm CO_2$ desorption analysis during heating the solid samples in Argon flow up to 720°C with 10°C/min heating rate. This analysis can be also performed in $\rm O_2$ -rich gas atmosphere for combustion tests.

Contact us for the customized solutions.

Specson Online Analiz ve Proje Deney Tasarımı Ltd Şti Mustafa Kemal Mahallesi, Cozone Yerleşkesi No:280, ODTÜ Teknokent

🗠 infospecson@gmail.com